La domanda di informazioni riguardanti il clima è sempre più rilevante. Osservazioni meteorologiche e climatiche sono vitali per ogni nazione. Per produrre studi sull'andamento climatico occorre che le variabili climatiche essenziali (ECVs) definite dal GCOS, Global Observing System for Climate, possiedano una riferibilità metrologica e una valutazione dell'incertezza di misura. Una valutazione dell'incertezza associata alla misura richiede la conoscenza completa del sistema di misura, a partire dal suo comportamento intrinseco, l'influenza di altri parametri e del sito di installazione. Gli istituti metrologici ad oggi, si occupano di fornire procedure di taratura specifiche, supporto nella valutazione delle incertezze di misura e nella analisi di qualità dei dati, e riferibilità metrologica per applicazioni ambientali. In questo contesto è stato lanciato il progetto Meteomet ¿ Metrology for meteorology unito al European Metrology Research Programme. Insieme con le attività di MeteoMet il mio lavoro, condotto prevalentemente presso l'Istituto Nazionale di Ricerca Metrologica (INRiM), siti di osservazione e stazioni di monitoraggio nelle Alpi, si concentra sulla temperatura dell'aria e del permafrost. Gli obbiettivi sono migliorare l'accuratezza di misura, sviluppare nuove procedure di taratura per gli strumenti e il loro uso in campo. L'influenza del sito di installazione sulla misura è un problema identificato nelle linee guida del World Meteorological Observation. Condizioni specifiche del sito possono generare errori di misura superiori all'incertezza strumentale. La temperatura dell'aria misurata dalle stazioni meteo automatiche (AWS) è fortemente influenzata dalla radiazione solare riflessa dal suolo. In questa tesi si considera l'effetto dell'albedo della neve al suolo come componente di incertezza sulla misura della temperatura dell'aria. Un altro fattore determinante per la qualità di misura è il comportamento intrinseco del sensore. La norma ISO 17714:2007 definisce le caratteristiche più rilevati degli schermi solari per le AWS, e fornisce delle indicazioni per il calcolo del tempo di risposta del sensore per la misura della temperatura dell'aria. Si è condotto un esperimento per migliorare queste indicazioni con l'inclusione di un'incertezza associata alla misura. Inoltre si è eseguito uno studio sui tempi di risposta di diversi tipi di sensori di temperatura del permafrost. La temperatura del permafrost è stata inclusa nel gruppo minimo di ECV. Quando non è possibile disinstallare i sensori per la taratura in laboratorio, è suggerita una taratura in-situ. In quest'ottica si è assemblato un laboratorio di taratura vicino alla stazione di monitoraggio ARPA sul Colle del Sommeiller (3000 m s.l.m. nelle Alpi piemontesi) per trare una catena di sensori della stazione. Per valutare il possibile effetto di auto-riscaldamento dei sensori dovuto alla procedura di taratura si è eseguito un esperimento nei laboratori dell'INRiM. La riferibilità metrologica richiede la periodica taratura degli strumenti di misura. In questa tesi viene presentata una procedura specifica per la taratura di una AWS. Occupandosi nello specifico di misure di temperatura dell'aria e del permafrost questo lavoro contribuisce alla comprensione e valutazione delle quantità che influenzano l'accuratezza di misura e la confrontabilità delle stazioni di osservazione
To improve understanding of climate evolution, the Global Observing System for Climate (GCOS), defined a number of terrestrial, atmospheric and oceanic Essential Climate Variables (ECVs). The ECVs are observed by means of multitudes of measuring systems, stations and networks. For generating robust and comparable data archives, measurements of ECVs need sustained traceability to the International System of Units and reliable measurement uncertainty evaluation. Dedicated calibration procedures, support in understanding measurement uncertainties, data quality analysis and traceability for environmental applications are now established activities in metrology institutes. In this framework the MeteoMet ¿ Metrology for Meteorology project was launched within the European Metrology Research Programme. Within the MeteoMet activities, the focus of my thesis has been on air and permafrost temperature and has been mainly carried on at the Istituto Nazionale di Ricerca Metrologica (INRiM) and on experimental sites and stations in the Alps. Consistent measurement uncertainty calculation requires complete knowledge of any measurement system starting with its intrinsic behaviour, the influence of other parameter and of the installation site. The research focused on improved measurement accuracy, development of innovative practical calibration methods and instrumentation for use in the field. The siting influence on the measurement results is an issue clearly identified in the World Meteorological Observation guidelines and best practice. Environmental condition of a site may generate measurement errors that exceeds the instrumental uncertainty. The air temperature measured by automatic weather station (AWS) depends strongly on the indirect sun reflected by the ground. This work focuses on considering the albedo reflected by a snow-covered surface as an uncertainty component in air temperature measurements. Another primary quality factor of a measurement is the set of intrinsic parameters of the instrument used. The standard ISO 17714:2007 defines most relevant AWS screen characteristics for air temperature measurement, a practical method is given for the determination of the system response time. Response time of air temperature sensors with screen was investigated to improve the standard by inclusion of uncertainty. To determinate the response time of permafrost temperature probes, a study on different type of sensors was conducted. Permafrost temperature is also included in the minimum group of terrestrial variables and the need for metrological traceability and adoption of standard methods was expressed by GCOS. When removing a permafrost chain of sensors and bringing it to the calibration laboratory is difficult, then an on site calibration is suggested. A laboratory was assembled close to the ARPA station at the Sommeiller Pass (3000 m a.s.l. Piedmont Alps) to perform a calibration of the permafrost sensors. To estimate a possible self-hating effect due to the calibration procedure, an experiment at INRiM facility was performed. The traceability of the measurements requires the calibration of measurement instruments. In this work a dedicated procedure for the calibration of an AWS is presented. Addressing specific tasks in air and permafrost measurements for climatology, this work advanced the contribution in understanding and evaluating quantities of influence affecting measurement accuracy and comparability among and within networks stations.
Metrologia per le applicazioni meteorologiche e climatologiche: interazioni tra sensore e misurando
MASSANO, LAURA TERESA
2016/2017
Abstract
To improve understanding of climate evolution, the Global Observing System for Climate (GCOS), defined a number of terrestrial, atmospheric and oceanic Essential Climate Variables (ECVs). The ECVs are observed by means of multitudes of measuring systems, stations and networks. For generating robust and comparable data archives, measurements of ECVs need sustained traceability to the International System of Units and reliable measurement uncertainty evaluation. Dedicated calibration procedures, support in understanding measurement uncertainties, data quality analysis and traceability for environmental applications are now established activities in metrology institutes. In this framework the MeteoMet ¿ Metrology for Meteorology project was launched within the European Metrology Research Programme. Within the MeteoMet activities, the focus of my thesis has been on air and permafrost temperature and has been mainly carried on at the Istituto Nazionale di Ricerca Metrologica (INRiM) and on experimental sites and stations in the Alps. Consistent measurement uncertainty calculation requires complete knowledge of any measurement system starting with its intrinsic behaviour, the influence of other parameter and of the installation site. The research focused on improved measurement accuracy, development of innovative practical calibration methods and instrumentation for use in the field. The siting influence on the measurement results is an issue clearly identified in the World Meteorological Observation guidelines and best practice. Environmental condition of a site may generate measurement errors that exceeds the instrumental uncertainty. The air temperature measured by automatic weather station (AWS) depends strongly on the indirect sun reflected by the ground. This work focuses on considering the albedo reflected by a snow-covered surface as an uncertainty component in air temperature measurements. Another primary quality factor of a measurement is the set of intrinsic parameters of the instrument used. The standard ISO 17714:2007 defines most relevant AWS screen characteristics for air temperature measurement, a practical method is given for the determination of the system response time. Response time of air temperature sensors with screen was investigated to improve the standard by inclusion of uncertainty. To determinate the response time of permafrost temperature probes, a study on different type of sensors was conducted. Permafrost temperature is also included in the minimum group of terrestrial variables and the need for metrological traceability and adoption of standard methods was expressed by GCOS. When removing a permafrost chain of sensors and bringing it to the calibration laboratory is difficult, then an on site calibration is suggested. A laboratory was assembled close to the ARPA station at the Sommeiller Pass (3000 m a.s.l. Piedmont Alps) to perform a calibration of the permafrost sensors. To estimate a possible self-hating effect due to the calibration procedure, an experiment at INRiM facility was performed. The traceability of the measurements requires the calibration of measurement instruments. In this work a dedicated procedure for the calibration of an AWS is presented. Addressing specific tasks in air and permafrost measurements for climatology, this work advanced the contribution in understanding and evaluating quantities of influence affecting measurement accuracy and comparability among and within networks stations.File | Dimensione | Formato | |
---|---|---|---|
716404_massano_tesi.pdf
non disponibili
Tipologia:
Altro materiale allegato
Dimensione
11.07 MB
Formato
Adobe PDF
|
11.07 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14240/95353