In this work artificial neural networks are used to parameterize shape functions in inclusive semileptonic charmless decays B → Xulνl in the NNVub framework. A novel approach based on Lagrange interpolants is proposed to address the computational problems of evaluating multiple observables in run-time and the M2X spectrum is introduced for the first time as a constraint. The python implementation has been tested extracting |Vub| and checking the results with the original NNVub paper.
NNVub: una determinazione di Vub da algoritmi di Machine Learning
PORCHEDDU, ANDREA
2021/2022
Abstract
In this work artificial neural networks are used to parameterize shape functions in inclusive semileptonic charmless decays B → Xulνl in the NNVub framework. A novel approach based on Lagrange interpolants is proposed to address the computational problems of evaluating multiple observables in run-time and the M2X spectrum is introduced for the first time as a constraint. The python implementation has been tested extracting |Vub| and checking the results with the original NNVub paper.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
815424_tesi_andrea_porcheddu.pdf
non disponibili
Tipologia:
Altro materiale allegato
Dimensione
6.84 MB
Formato
Adobe PDF
|
6.84 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14240/85997