In this work artificial neural networks are used to parameterize shape functions in inclusive semileptonic charmless decays B → Xulνl in the NNVub framework. A novel approach based on Lagrange interpolants is proposed to address the computational problems of evaluating multiple observables in run-time and the M2X spectrum is introduced for the first time as a constraint. The python implementation has been tested extracting |Vub| and checking the results with the original NNVub paper.

NNVub: una determinazione di Vub da algoritmi di Machine Learning

PORCHEDDU, ANDREA
2021/2022

Abstract

In this work artificial neural networks are used to parameterize shape functions in inclusive semileptonic charmless decays B → Xulνl in the NNVub framework. A novel approach based on Lagrange interpolants is proposed to address the computational problems of evaluating multiple observables in run-time and the M2X spectrum is introduced for the first time as a constraint. The python implementation has been tested extracting |Vub| and checking the results with the original NNVub paper.
ENG
IMPORT DA TESIONLINE
File in questo prodotto:
File Dimensione Formato  
815424_tesi_andrea_porcheddu.pdf

non disponibili

Tipologia: Altro materiale allegato
Dimensione 6.84 MB
Formato Adobe PDF
6.84 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14240/85997