Gli enzimi appartenenti alla classe dell' acetaldeide deidrogenasi catalizzano la conversione dell'acetaldeide in acetil coenzimaA. Questa reazione è accoppiata alla riduzione di una molecola di NAD+. Noi, in questo lavoro, abbiamo studiato due acetaldeide deidrogenasi: PheF, espressa dal Geobacillus stearothrmophylus e ALDH, espressa da Geobacillus thermoglucosidasius. Questi microrganismi, appartenenti entrambi al genere Baccillus presentano una temperatura ottimale di crescita di circa 50-60°C e sono entrambi capaci di utilizzare i fenoli come unica fonte di carbonio. Esistono due possibili vie di degradazione per i fenoli: l'ortho-pathway e il meta-pathway ma ad oggi, nei batteri termofili, l'ortho-pathway non è ancora stato descritto. Il meta-pathway porta alla conversione del fenolo in piruvato e acetaldeide. Il piruvato puo' accedere direttamente al ciclo di krebs mentre l'acetaldeide per accedervi deve essere prima convertita in acetil CoA e questa conversione è catalizzata dall'acetaldeide deidrogenasi. Entrambe le proteine studiate sono termostabili e questa caratteristica le rende adeguate a processi industriali fermentativi e a sistemi enzimatici puri dove uno degli ostacoli principali è la bassa tolleranza degli enzimi alle elevate temperature che in genere accompagnano l'aumento della velocità di reazione. Il meta pathway che porta alla degradazione del fenolo ha molte applicazioni biotecnologiche come l'applicazione a bioreattori per lo smaltimento di inquinanti ambientali o la loro trasformazione in altri prodotti quali, ad esempio, i biocarburanti. Infatti, sia il piruvato che l'acetil CoA sono metaboliti centrali in pathway naturali e sintetici che portano alla biosintesi di isobutanolo e isobutanolo. In questo studio, noi abbiamo espresso entrambe le proteine ricombinanti in Escherichia coli, le abbiamo purificate mediante la cromatografia di affinità e la cromatografia ad esclusione dimensionale e abbiamo cercato di ottenere dei cristalli. Qui presentiamo la struttura di PheF ottenuta mediante cristallografia a raggi X determinata a 1.9 Å di risoluzione. La struttura della proteina è stata ottenuta per mezzo del metodo delle sostituzioni molecolari.
Acetaldehyde dehydrogenase enzymes catalyze the conversion of acetaldehyde to Acetyl-Coenzyme A. This reaction is coupled to the reduction of one NAD+ molecule. We investigated a pair of acetaldehyde dehydrogenases: PheF, from Geobacillus stearothermophilus, and ALDH, from Geobacillus thermoglucosidasius. These organisms from the Bacillus species with an optimal growth temperature of 50-60°C are both able to use phenol as a sole carbon source. Phenol is usually degraded via two alternative pathways - the ortho-pathway and the meta-pathway - but, to our knowledge, the ortho-pathway alternative has never been described in thermophilic bacteria before. Through the Phenol-meta-degradation pathway the phenol is converted into pyruvate and acetaldehyde. The pyruvate and the acetaldehyde can enter the Krebs cycle after having been converted to acetyl-CoA respectively by the pyruvate dehydrogenase complex and the acetaldehyde dehydrogenase. Both proteins are thermostable and consequently they have more applications in fermentation processes and cell-free-reactions where, among the key barriers for the cost-effective implementation, there is low tolerance to elevated temperatures. The Phenol-meta-degradation pathway can be adopted in many biotechnological applications, including, for example, its use in toxic waste-removal bioreactors or in the treatment of contaminated waste streams for the production of valuable biotransformation products like biofuel. In fact, pyruvate and Acetyl-CoA are central metabolites in native and novel pathways for the synthesis of both isobutanol and butanol. In this study we expressed both recombinant proteins in Escherichia coli, we applied the affinity tag purification and the size exclusion chromatography, and finally we tried to obtain the protein crystals to determine the 3D structure. Here we presented the structure determination of PheF. Recombinantly produced PheF yielded crystals that diffracted to 1.9 Å resolution. The structure of PheF was solved by molecular replacement.
Studio Biochimico, Biofisico e Biostrutturale dell'acetaldeide deidrogenasi
DE MARZI, PATRIZIA
2014/2015
Abstract
Acetaldehyde dehydrogenase enzymes catalyze the conversion of acetaldehyde to Acetyl-Coenzyme A. This reaction is coupled to the reduction of one NAD+ molecule. We investigated a pair of acetaldehyde dehydrogenases: PheF, from Geobacillus stearothermophilus, and ALDH, from Geobacillus thermoglucosidasius. These organisms from the Bacillus species with an optimal growth temperature of 50-60°C are both able to use phenol as a sole carbon source. Phenol is usually degraded via two alternative pathways - the ortho-pathway and the meta-pathway - but, to our knowledge, the ortho-pathway alternative has never been described in thermophilic bacteria before. Through the Phenol-meta-degradation pathway the phenol is converted into pyruvate and acetaldehyde. The pyruvate and the acetaldehyde can enter the Krebs cycle after having been converted to acetyl-CoA respectively by the pyruvate dehydrogenase complex and the acetaldehyde dehydrogenase. Both proteins are thermostable and consequently they have more applications in fermentation processes and cell-free-reactions where, among the key barriers for the cost-effective implementation, there is low tolerance to elevated temperatures. The Phenol-meta-degradation pathway can be adopted in many biotechnological applications, including, for example, its use in toxic waste-removal bioreactors or in the treatment of contaminated waste streams for the production of valuable biotransformation products like biofuel. In fact, pyruvate and Acetyl-CoA are central metabolites in native and novel pathways for the synthesis of both isobutanol and butanol. In this study we expressed both recombinant proteins in Escherichia coli, we applied the affinity tag purification and the size exclusion chromatography, and finally we tried to obtain the protein crystals to determine the 3D structure. Here we presented the structure determination of PheF. Recombinantly produced PheF yielded crystals that diffracted to 1.9 Å resolution. The structure of PheF was solved by molecular replacement.File | Dimensione | Formato | |
---|---|---|---|
328737_biochemicalbiophysicalandstructuralinvestigationsofacetaldehydedehydrogenase.pdf
non disponibili
Tipologia:
Altro materiale allegato
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14240/70500