Motivazione: Il diabete mellito è una malattia metabolica associata ad alti livelli di glucosio nel sangue che attualmente colpisce più di 400 miliardi di persone in tutto il mondo. Anche se oltre il 90% del numero totale di casi è rappresentato da diabete di tipo 2 (T2D), esiste una percentuale di pazienti affetta da un altro tipo di diabete, chiamato diabete monogenico. MODY, acronimo di Maturity Onset Diabetes of the Young, è la forma più comune di diabete monogenico ed è causata da mutazioni in geni specifici delle cellule beta pancreatiche. Ciò nonostante, una considerevole frazione di pazienti che presentano il fenotipo MODY (fenotipo MODY-X) non riporta le mutazioni descritte in precedenza e quindi la causa genetica sottostante deve ancora essere identificata. Durante l'ultimo decennio, i progressi nel Next Generation Sequencing (NGS) hanno permesso la scoperta di nuove mutazioni genetiche che causano malattie umane. Il lavoro in corso nel laboratorio del Prof. Ferrer ha identificato, in un'ampia coorte di pazienti MODY-X ed attraverso capture sequencing, una presunta nuova variante genetica non codificante in un potenziale enhancer nel locus 14q12. Poiché sia la variante genetica che il potenziale enhancer non erano stati caratterizzati in precedenza, il progetto di tesi si è concentrato sulla validazione funzionale dell’enhancer e sull'analisi degli effetti della variante presente nell’enhancer valutando il profilo epigenetico, con il saggio di analisi del gene reporter della luciferasi e la valutazione dell’effetto della variante sul legame di specifici fattori trascrizionali. Metodi: Per valutare se la variante fosse localizzata in un potenziale enhancer, le banche di dati pubblici di UCSC e Epigenomics Roadmap sono state utilizzate per ricerca di regioni accessibili di cromatina e di modificazioni istoniche solitamente associate alle regioni regolatorie attive. Per confermare se la regione fosse attiva e se la variante genetica associata a MODY stesse alterando l'attività del potenziale enhancer, saggi di luciferasi sono stati condotti sulle linee cellulari 293T, MIN6 e progenitori pancreatici. Infine, per valutare se la variante genetica associata a MODY alterasse siti di legame di fattori di trascrizione (TFBS) rilevanti nella patogenesi del diabete, è stata eseguita un’analisi per valutare l’impatto della variante nel modificare il sito di legame di un fattore trascrizionale utilizzando il pacchetto MotifBreakR R. Risultati: L'analisi dei dati epigenomici ha rivelato che il potenziale enhancer nelle linee cellulare delle isole pancreatiche adulte e dei progenitori pancreatici ha le caratteristiche della cromatina normalmente associate agli enhancers attivi. I saggi funzionali della luciferasi hanno mostrato che il potenziale enhancer induce un aumento dell’attività trascrizionale nelle linee cellulari 293Ts, MIN6 e nei progenitori pancreatici. Inoltre, questi esperimenti hanno mostrato che la variante genetica associata a MODY-X potrebbe potenziare l'attività del predetto enhancer. Infine, l'analisi di MotifBreakR ha mostrato che la presenza della variante favorisce il legame dei fattori di trascrizione della famiglia E2F al potenziale enhancer. Discussione e conclusione: Il potenziale enhancer 14q12 è attivo nelle cellule 293T, MIN6 e progenitori pancreatici in vitro e la variante genetica non codificante associata al fenotipo MODY-X mostra un aumento dell'attività basale del enhancer in vitro. Inoltre, un’analisi bioinformatica ha dimostrato che questa variante altera il sito di legame di fattori di trascrizione rilevanti. Ulteriori studi forniranno nuove conoscenze sul ruolo effettivo che la variante svolge nella patogenesi del diabete, ad esempio la tecnologia della CRISPR/CAS9 potrebbe essere usata in vivo per generare modelli animali contenenti la variante nel 14q12 enhancer.
Motivation: Diabetes mellitus is a metabolic disease associated with high blood glucose levels and it is a chronic condition that currently affects more than 400 billion people worldwide. Even though more than 90 % of the total cases are Type 2 Diabetes (T2D) cases, there is a percentage of patients suffering from other types of diabetes, including monogenic diabetes. MODY stands for Maturity-Onset Diabetes of the Young and it is a monogenic diabetes caused by mutations in pancreatic beta-cell genes. Nevertheless, there is a fraction of patients presenting MODY-like phenotype, referred to as MODY-X patients, who do not carry previously described coding mutations. Throughout the last decade, advances in next generation sequencing have allowed the discovery of new genetic mutations causing human disease. Ongoing work in the Ferrer Lab has identified a putative novel non-coding genetic variant associated with a large cohort of MODY-X patients through capture sequencing on a candidate enhancer region located in the 14q12 locus. Since neither the genetic variant nor the putative regulatory region have been previously characterized, this thesis research project focused on the functional validation of the candidate enhancer and the analysis of the effects of the variant on said enhancer through epigenetic profiling, luciferases assays and transcription factor disruption bioinformatics analysis. Methods: To evaluate if the variant was located on a putative regulatory enhancer, UCSC and Epigenomics Roadmap public databases were mined in search of active chromatin accessibility and histone modifications marks associated with active regulatory regions. To confirm if the region was active and if the MODY-associated genetic variant was altering the activity of the putative enhancer, luciferase assays were carried out on 293Ts, MIN6, and pancreatic progenitor cell lines. Finally, to assess if the genetic variant associated to MODY disrupted any transcription factor binding site (TFBS) relevant to diabetes pathogenesis a motif disruption analysis was performed using MotifBreakR R package. Results: Analysis of epigenomic datasets interrogated revealed that the candidate enhancer reports all the chromatin features normally associated with active enhancers in adult human islets and pancreatic progenitor cell lines. Functional luciferase assays showed that the candidate enhancer was active in 293Ts, MIN6 and pancreatic progenitor cell lines. Moreover, these assays showed that the MODY-X associated genetic variant might enhance the activity of the candidate enhancer. Finally, MotifBreakR analysis has shown that the presence of the variant causes a stronger binding of transcription factors of the E2F family to the putative enhancer. Discussion and conclusion: 14q12 candidate enhancer has enhancing regulatory activity in 293Ts, MIN6 and pancreatic progenitor cells in vitro and the non-coding genetic variant associated to MODY-X phenotype has shown to enhance the basal activity of the candidate enhancer in vitro. Additionally, bioinformatics analysis has shown that this variant disrupts relevant TFBS. Further work is needed to gain new insights on the actual role that the variant plays in diabetes pathogenesis, which might include in vivo genetic engineering of CRISPR/CAS9 to generate animal models containing the mutated enhancer element.
Validazione funzionale di una variante nucleotidica in una regione non codificante associata a diabete monogenico
PETRACHI, EMILIA
2020/2021
Abstract
Motivation: Diabetes mellitus is a metabolic disease associated with high blood glucose levels and it is a chronic condition that currently affects more than 400 billion people worldwide. Even though more than 90 % of the total cases are Type 2 Diabetes (T2D) cases, there is a percentage of patients suffering from other types of diabetes, including monogenic diabetes. MODY stands for Maturity-Onset Diabetes of the Young and it is a monogenic diabetes caused by mutations in pancreatic beta-cell genes. Nevertheless, there is a fraction of patients presenting MODY-like phenotype, referred to as MODY-X patients, who do not carry previously described coding mutations. Throughout the last decade, advances in next generation sequencing have allowed the discovery of new genetic mutations causing human disease. Ongoing work in the Ferrer Lab has identified a putative novel non-coding genetic variant associated with a large cohort of MODY-X patients through capture sequencing on a candidate enhancer region located in the 14q12 locus. Since neither the genetic variant nor the putative regulatory region have been previously characterized, this thesis research project focused on the functional validation of the candidate enhancer and the analysis of the effects of the variant on said enhancer through epigenetic profiling, luciferases assays and transcription factor disruption bioinformatics analysis. Methods: To evaluate if the variant was located on a putative regulatory enhancer, UCSC and Epigenomics Roadmap public databases were mined in search of active chromatin accessibility and histone modifications marks associated with active regulatory regions. To confirm if the region was active and if the MODY-associated genetic variant was altering the activity of the putative enhancer, luciferase assays were carried out on 293Ts, MIN6, and pancreatic progenitor cell lines. Finally, to assess if the genetic variant associated to MODY disrupted any transcription factor binding site (TFBS) relevant to diabetes pathogenesis a motif disruption analysis was performed using MotifBreakR R package. Results: Analysis of epigenomic datasets interrogated revealed that the candidate enhancer reports all the chromatin features normally associated with active enhancers in adult human islets and pancreatic progenitor cell lines. Functional luciferase assays showed that the candidate enhancer was active in 293Ts, MIN6 and pancreatic progenitor cell lines. Moreover, these assays showed that the MODY-X associated genetic variant might enhance the activity of the candidate enhancer. Finally, MotifBreakR analysis has shown that the presence of the variant causes a stronger binding of transcription factors of the E2F family to the putative enhancer. Discussion and conclusion: 14q12 candidate enhancer has enhancing regulatory activity in 293Ts, MIN6 and pancreatic progenitor cells in vitro and the non-coding genetic variant associated to MODY-X phenotype has shown to enhance the basal activity of the candidate enhancer in vitro. Additionally, bioinformatics analysis has shown that this variant disrupts relevant TFBS. Further work is needed to gain new insights on the actual role that the variant plays in diabetes pathogenesis, which might include in vivo genetic engineering of CRISPR/CAS9 to generate animal models containing the mutated enhancer element.File | Dimensione | Formato | |
---|---|---|---|
921159_emiliathesis921159.pdf
non disponibili
Tipologia:
Altro materiale allegato
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14240/66850