The aim of this thesis is twofold: on one hand we study the Cauchy problem associated with the theory of wave maps, on the other we describe an analytic procedure that, given a Lagrangian over some fiber bundle, which we assume has normally hyperbolic linearized dynamical equations, allow us to implement the structure of Poisson *-algebra for microcausal functionals, via the Peierls bracket. Furthermore we will establish a suitable topology and then examine properties of such algebra.
Wave maps e l'approccio algebrico alla teoria dei campi classica
MORO, ANDREA
2018/2019
Abstract
The aim of this thesis is twofold: on one hand we study the Cauchy problem associated with the theory of wave maps, on the other we describe an analytic procedure that, given a Lagrangian over some fiber bundle, which we assume has normally hyperbolic linearized dynamical equations, allow us to implement the structure of Poisson *-algebra for microcausal functionals, via the Peierls bracket. Furthermore we will establish a suitable topology and then examine properties of such algebra.File | Dimensione | Formato | |
---|---|---|---|
780789_tesi_magistrale_andrea_moro.pdf
non disponibili
Tipologia:
Altro materiale allegato
Dimensione
868.74 kB
Formato
Adobe PDF
|
868.74 kB | Adobe PDF |
Se sei interessato/a a consultare l'elaborato, vai nella sezione Home in alto a destra, dove troverai le informazioni su come richiederlo. I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14240/51341