The path integral is a common tool used to study a great variety of systems, in this thesis I study path integrals using the steepest descent method by complexifying the paths on which the action is calculated. Using this tools, many correlation between classical and quantum systems will be presented. I will analyze some already known problems such as the free particle and the simple harmonic oscillator, then I will develop a study of the double well potential, first by classifying the real (and complex) classical solutions, then by offering a method to study the quantum evolution of the system. ​

Integrali di Cammino alla Feynman Complessificati in Meccanica Quantistica con il Metodo del Punto a Sella

FILA-ROBATTINO, FILIPPO
2018/2019

Abstract

The path integral is a common tool used to study a great variety of systems, in this thesis I study path integrals using the steepest descent method by complexifying the paths on which the action is calculated. Using this tools, many correlation between classical and quantum systems will be presented. I will analyze some already known problems such as the free particle and the simple harmonic oscillator, then I will develop a study of the double well potential, first by classifying the real (and complex) classical solutions, then by offering a method to study the quantum evolution of the system. ​
ENG
IMPORT DA TESIONLINE
File in questo prodotto:
File Dimensione Formato  
838322A_tesi_fila-robattino.zip

non disponibili

Tipologia: Altro materiale allegato
Dimensione 866.7 kB
Formato Unknown
866.7 kB Unknown
838322_complexified_feynman_path_integrals_in_quantum_mechanics_fila-robattino.pdf

non disponibili

Tipologia: Altro materiale allegato
Dimensione 615.87 kB
Formato Adobe PDF
615.87 kB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14240/42714