Secondo la IUPAC, gli atropoisomeri sono definiti come “una sottoclasse di conformeri che possono essere isolati come specie chimiche distinte e che hanno origine da una ristretta rotazione intorno ad un legame singolo”. Questa rotazione dà origine a due forme enantiomeriche. Un’analisi condotta su circa 1900 molecole della Drug Bank dell’FDA ha mostrato che circa il 15% delle piccole molecole approvate dall’FDA contiene almeno un asse di chiralità ed un ulteriore 10% è “pro-atropoisomerico”, ovvero caratterizzato dal fatto che semplici modifiche strutturali intorno all’asse possono rompere la simmetria e generare atropoisomeria. Inoltre, l’atropoisomeria si ritrova in molti scaffold di molecole di interesse farmaceutico, come biarili, diaril-eteri, diaril-amine, benzamidi e aniline. Le N-aril-tiazoline consistono in una porzione fenilica ed una eterociclica. Presentano una chiralità assiale, derivante dal blocco della libera rotazione intorno al legame N-Carilico, a cui è associata una barriera di rotazione ΔG≠rot, che corrisponde all’energia richiesta per passare da un enantiomero all’altro attraverso la rotazione intorno all’asse di chiralità. Questa rotazione evidenzia uno stato di transizione planare, meno stabile dello stato fondamentale a causa delle interazioni steriche tra i sostituenti posti intorno all’asse. Lo scopo di questa tesi è di valutare l’influenza dei sostituenti in posizione orto sul valore della barriere rotazionali in atropoisomeri N-arilici. Per determinare le barriere rotazionali, è stata misurata la costante cinetica krot, che corrisponde al passaggio da un enantiomero all’altro, scaldando fino ad una certa temperatura uno dei due enantiomeri puri ottenuti attraverso HPLC chirale preparativa. Micro campioni di prodotto sono stati prelevati ad intervalli di tempo definiti ed iniettati in HPLC chirale, in modo da poter seguire l’evoluzione dell’eccesso enantiomerico. Le barriere rotazionali ΔG≠rot sono state calcolate a partire dalla costante cinetica krot attraverso l’equazione di Eyring. I risultati ottenuti mostrano che i valori delle barriere rotazionali aumentano all’aumentare della taglia dei sostituenti posti intorno all’asse di chiralità. Infatti, i valori di barriera sono coerenti con i raggi di Van der Waals di questi sostituenti e ciò significa che la stabilità enantiomerica è influenzata dal loro ingombro sterico. Inoltre, i risultati mostrano che modifiche strutturali anche piccole possono avere un grande impatto sulla stabilità enantiomerica di ogni molecola e ciò fornisce delle tendenze generali sulle relazioni tra struttura e barriera rotazionale. Questi dati possono essere trasposti su altre serie di atropoisomeri ed utilizzate durante le fasi di sviluppo e ottimizzazione strutturale di molecole di interesse farmaceutico. [1]IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997) [2] Belot, V., Farran, D., Jean, M., Albalat, M., Vanthuyne, N., & Roussel, C. (2017). Steric Scale of Common Substituents from Rotational Barriers of N-(o-Substituted aryl)thiazoline-2-thione Atropisomers. The Journal of Organic Chemistry, 82(19), 10188–10200 [3] Toenjes, S. T., & Gustafson, J. L. (2018). Atropisomerism in medicinal chemistry: challenges and opportunities. Future Medicinal Chemistry, 10(4), 409–422
According to IUPAC, atropisomers are defined as “a subclass of conformers that can be isolated as separated chemical species and which arise from the restricted rotation about a single bond”. This restricted rotation gives rise to two enantiomeric forms of molecules presenting atropisomerism. An analysis conducted on about 1900 molecules in the FDA Drug Bank showed that about 15% of FDA-approved small molecules contain at least one chirality axis and an additional 10% of structures are “proatropisomeric”, meaning simple modifications about the axis can break the symmetry and render these drugs atropisomeric. Furthermore, atropisomerism arises in many common scaffolds in drug discovery, such as biaryls, diaryl ethers, diaryl amines, benzamides and anilines. N-aryl-thiazolines consist of an aryl portion and a heterocyclic one. They present an axial chirality, arising from the blocking of free rotation about N-Caryl bond. A rotational barrier ΔG≠rot, corresponding to energy required to pass from one enantiomer to the other through rotation about the chirality axis, is associated with this characteristic. This rotation points out a planar transition state, which is less stable than the ground state due to the steric interactions between flanking substituents with respect to the chirality axis. The aim of this project is to assess the influence of substituents in ortho position on the value of rotational barrier in N-aryl atropisomers. In order to determine rotational barriers, the kinetic constant krot corresponding to the passage from one enantiomer to the other was measured by heating to a certain temperature one of the pure enantiomers obtained by preparative chiral chromatography in order to follow the evolution of enantiomeric excess. Micro-samples of the product were taken at determined time intervals and then injected in chiral HPLC. Rotational barriers ΔG≠rot were calculated from kinetic constants krot through Eyring equation. Moreover, chiroptical properties of each enantiomer were established through circular dichroism and polarimetry. The results found show that rotational barriers values increase as the size flanking substituents increase. In fact, rotational barrier values are in accordance with Van der Waals radii of these substituents, meaning that enantiomeric stability is affected by their steric hindrances. Moreover, results show that small structural modifications can have a large impact on enantiomeric stability of the molecule, providing a general trend on the structure-rotational barrier relationships. These data can be transposed to other atropisomeric series and used during drug development and structure optimization processes. [1]IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997) [2] Belot, V., Farran, D., Jean, M., Albalat, M., Vanthuyne, N., & Roussel, C. (2017). Steric Scale of Common Substituents from Rotational Barriers of N-(o-Substituted aryl)thiazoline-2-thione Atropisomers. The Journal of Organic Chemistry, 82(19), 10188–10200 [3] Toenjes, S. T., & Gustafson, J. L. (2018). Atropisomerism in medicinal chemistry: challenges and opportunities. Future Medicinal Chemistry, 10(4), 409–422
Influenza delle modifiche strutturali sulle barriere rotazionali di N-aril-tiazoline
BOSSA, GIULIA
2019/2020
Abstract
According to IUPAC, atropisomers are defined as “a subclass of conformers that can be isolated as separated chemical species and which arise from the restricted rotation about a single bond”. This restricted rotation gives rise to two enantiomeric forms of molecules presenting atropisomerism. An analysis conducted on about 1900 molecules in the FDA Drug Bank showed that about 15% of FDA-approved small molecules contain at least one chirality axis and an additional 10% of structures are “proatropisomeric”, meaning simple modifications about the axis can break the symmetry and render these drugs atropisomeric. Furthermore, atropisomerism arises in many common scaffolds in drug discovery, such as biaryls, diaryl ethers, diaryl amines, benzamides and anilines. N-aryl-thiazolines consist of an aryl portion and a heterocyclic one. They present an axial chirality, arising from the blocking of free rotation about N-Caryl bond. A rotational barrier ΔG≠rot, corresponding to energy required to pass from one enantiomer to the other through rotation about the chirality axis, is associated with this characteristic. This rotation points out a planar transition state, which is less stable than the ground state due to the steric interactions between flanking substituents with respect to the chirality axis. The aim of this project is to assess the influence of substituents in ortho position on the value of rotational barrier in N-aryl atropisomers. In order to determine rotational barriers, the kinetic constant krot corresponding to the passage from one enantiomer to the other was measured by heating to a certain temperature one of the pure enantiomers obtained by preparative chiral chromatography in order to follow the evolution of enantiomeric excess. Micro-samples of the product were taken at determined time intervals and then injected in chiral HPLC. Rotational barriers ΔG≠rot were calculated from kinetic constants krot through Eyring equation. Moreover, chiroptical properties of each enantiomer were established through circular dichroism and polarimetry. The results found show that rotational barriers values increase as the size flanking substituents increase. In fact, rotational barrier values are in accordance with Van der Waals radii of these substituents, meaning that enantiomeric stability is affected by their steric hindrances. Moreover, results show that small structural modifications can have a large impact on enantiomeric stability of the molecule, providing a general trend on the structure-rotational barrier relationships. These data can be transposed to other atropisomeric series and used during drug development and structure optimization processes. [1]IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997) [2] Belot, V., Farran, D., Jean, M., Albalat, M., Vanthuyne, N., & Roussel, C. (2017). Steric Scale of Common Substituents from Rotational Barriers of N-(o-Substituted aryl)thiazoline-2-thione Atropisomers. The Journal of Organic Chemistry, 82(19), 10188–10200 [3] Toenjes, S. T., & Gustafson, J. L. (2018). Atropisomerism in medicinal chemistry: challenges and opportunities. Future Medicinal Chemistry, 10(4), 409–422File | Dimensione | Formato | |
---|---|---|---|
818334_tesicompletagiuliabossa.pdf
non disponibili
Tipologia:
Altro materiale allegato
Dimensione
2.7 MB
Formato
Adobe PDF
|
2.7 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14240/29810