La Bioisosteria è un'estensione del concetto di modulazione isosterica, in cui sono correlati due gruppi funzionali, noti come isosteri, che presentano proprietà fisico-chimiche simili. Quando due isosteri possiedono un profilo biologico comune, essi prendono il nome di bioisosteri. Se da un lato la chimica influenza la somiglianza isosterica dei gruppi, solo il bersaglio biologico può essere cruciale per la loro somiglianza bioisosterica e la loro attività farmacologica1. Il nostro gruppo di ricerca (MedSynth) ha condotto la sintesi e lo sviluppo di bioisosteri di acidi carbossilici sfruttando le proprietà acide di alcuni sistemi idrossi-azolici per migliorare le proprietà biologiche, farmacologiche e ADME. Elementi fondamentali importanti nella Drug Discovery2. Il presente lavoro sperimentale è incentrato sulla sintesi e sulla sostituzione bioisosterica di due diversi idrossi-azoli (idrossiapirazolo vedi 2, Fig.1 e idrossitriazolo, vedi 1, Fig.1) con uno scaffold 3-idrossiisossazolico. Queste sostituzioni sono state eseguite per scopi diversi: il composto 1 presenta uno scaffold 4-idrossitriazolico. Esso dispone di una buona attività verso l'enzima AKR1C3 ma presenta una scarsa solubilità. Il composto 3 è stato progettato con lo scopo di incrementare la solubilità di 1 sostituendo la funzione 4-idrossitriazolica con un nucleo 3-idrossiisossazolico senza influire sulla sua attività (Fig.1). Il composto 2, recante lo scaffold 3-idrossipirazolico, risulta essere attivo sull’enzima DHODH presente nel Plasmodium falciparum 3. La sostituzione della funzione pirazolica in 2 con un nucleo isossazolico, ha come scopo la possibilità di migliorare l'attività inibitoria nei confronti dell’enzima target (Fig.1). Inoltre, l'attività antiparassitaria verso il Plasmodium falciparum di alcuni inibitori di PfDHODH precedentemente sintetizzati dal gruppo MedSynth è stata determinata sperimentalmente presso l'Università di Paris-Saclay durante il periodo di mobilità Erasmus+.
Bioisosterism is an extension of the concept of isosteric modulation, in which two functional groups, known as isosteres, presenting similar physicochemical properties, are related. When isosteres also possess a common biological profile, they are known as bioisosteres. Whereas chemistry affects the isosteric similarity of groups, only the biological target can be crucial for their bioisosteric similarity1. Our research group (MedSynth group) has performed its advances in synthesis and development of bioisosteres of carboxylic acids by exploiting the acidic properties of some hydroxy-azole systems to improve biological, pharmacological, and ADME properties important in drug discovery 2. The present work is focused on the synthesis and bioisosteric replacement of two different hydroxyazoles (namely, hydroxytriazole and hydroxpyrazole) with a 3-hydroxyisoxazole scaffold in key compounds of MedSynth research 1 and 2 (Fig.1). These substitutions were performed for different purposes: compound 1, bearing 4-hydroxytriazolic scaffold, had a good activity towards AKR1C3 enzyme but low solubility. Compound 3 was designed with the purpose to increase the solubility of 1 replacing the 4-hydroxytriazole moiety with a 3-hydroxyisoxazole without affecting its activity (Fig.1). Compound 2, bearing the 3-hydroxypyrazole scaffold, was active on Plasmodium falciparum DHODH 3. Through the replacement of the pyrazole moiety in 2 with an isoxazole scaffold, the possibility of improving the inhibition activity was investigated. (Fig.1). Furthermore, antiparasitic activity towards Plasmodium Falciparum of some PfDHODH inhibitors previously synthesized by MedSynth group was experimentally determined at Paris-Saclay University during the Erasmus+ Internship.
Applicazione bioisosterica dello scaffold 3-idrossiisossazolico su molecole bioattive
MARCHISIO, LUCA
2020/2021
Abstract
Bioisosterism is an extension of the concept of isosteric modulation, in which two functional groups, known as isosteres, presenting similar physicochemical properties, are related. When isosteres also possess a common biological profile, they are known as bioisosteres. Whereas chemistry affects the isosteric similarity of groups, only the biological target can be crucial for their bioisosteric similarity1. Our research group (MedSynth group) has performed its advances in synthesis and development of bioisosteres of carboxylic acids by exploiting the acidic properties of some hydroxy-azole systems to improve biological, pharmacological, and ADME properties important in drug discovery 2. The present work is focused on the synthesis and bioisosteric replacement of two different hydroxyazoles (namely, hydroxytriazole and hydroxpyrazole) with a 3-hydroxyisoxazole scaffold in key compounds of MedSynth research 1 and 2 (Fig.1). These substitutions were performed for different purposes: compound 1, bearing 4-hydroxytriazolic scaffold, had a good activity towards AKR1C3 enzyme but low solubility. Compound 3 was designed with the purpose to increase the solubility of 1 replacing the 4-hydroxytriazole moiety with a 3-hydroxyisoxazole without affecting its activity (Fig.1). Compound 2, bearing the 3-hydroxypyrazole scaffold, was active on Plasmodium falciparum DHODH 3. Through the replacement of the pyrazole moiety in 2 with an isoxazole scaffold, the possibility of improving the inhibition activity was investigated. (Fig.1). Furthermore, antiparasitic activity towards Plasmodium Falciparum of some PfDHODH inhibitors previously synthesized by MedSynth group was experimentally determined at Paris-Saclay University during the Erasmus+ Internship.File | Dimensione | Formato | |
---|---|---|---|
841873_lucamarchisiotesifinale1.pdf
non disponibili
Tipologia:
Altro materiale allegato
Dimensione
5.06 MB
Formato
Adobe PDF
|
5.06 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14240/128797